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In this paper, we study several time-differencing procedures for the numerical solution 
of partial differential equations. We find that “partially corrected” time-differencing 
schemes offer some advantages over single-step methods. Such differencing schemes 
consist of a predictor step and a corrector step, however, the time derivative is evaluated 
only once in the two steps. Partially corrected time-differencing schemes can be used 
with particular advantage in transform methods, where the numerical approximation 
of the derivative terms represents the major portion of computing. All differencing 
methods are tested on the nonlinear Vlasov-Poisson system of equations with two 
phase-space variables. In the case of the numerical example considered, the partially 
corrected schemes are only about 1 % slower than the corresponding single-step proced- 
ures without correction. 

1. INTR~DLJCT~~N 

Time-differencing procedures for solving partial differential equations 
numerically have been studied extensively [l-6]. The two most widely accepted 
single-step procedures appear to be the leapfrog scheme and the second-order 
Adams-Bashforth method [I, 4,7]. It is interesting to note that both these schemes 
are unstable, which suggests that users place a great importance on the simplicity 
of the time-differencing procedures, even at the risk of numerical instabilities 
The numerical instabilities found in second-order single-step methods are absent 
in some of the commonly used predictor-corrector schemes [2, 8, p. 1861. In the 
conventional two-step procedures [2], the time derivative is calculated in both the 
predictor as well as the corrector steps. Although the accuracy of such two-step 
methods is higher, they require approximately twice as much computation as 
comparable single-step time-differencing schemes. As a result of this trade-off 
between higher accuracy and more computation, the advantages of such two-step 
methods are not always applicable to a given problem. 

We found that it is possible to devise two-step time-differencing procedures, 
in which the time derivative is calculated only in one of the two steps. Such 
“partially corrected” procedures require only slightly more computation than 
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the single-step methods. Their error characteristics, however, are improved con- 
siderably by the corrector step. This is particularly true for small time steps, in 
which case the truncation errors become comparable to those in the conventional 
(fully corrected) schemes. 

Partially corrected time-differencing procedures can be used with considerable 
advantage in transform methods. The term “transform method” refers collectively 
to those numerical procedures in which the space dependence of a function is 
expressed in terms of a set of orthogonal polynomials [9, lo], or in which some 
orthogonal transformation is used for the accurate and efficient computation of 
the space-derivative terms [I l-131. In such numerical approaches, the computation 
of the time derivative is usually the most costly operation in the numerical proce- 
dure. Consequently, the corrector step that does not involve the explicit recom- 
putation of the time derivative represents a rather small fraction of the total 
computing. 

In Section II, we review some of the single-step time-differencing procedures 
that have been used with success in transform methods. We discuss the corrected 
time-differencing schemes in Section III. We examine and compare the truncation 
errors associated with these methods in Section IV. To test these differencing 
schemes for the numerical solution of nonlinear partial differential equations, they 
were applied to the solving of the Vlasov-Poisson system of equations. Section V 
presents these results and discusses the accuracy obtained. Section VI concludes 
the paper. 

11. SINGLE-STEP TIME-DIFFERENCING SCHEMES 

Consider the equation 

au/at = G(u, X, t), (1) 

where x and t are distance and time, respectively. Perhaps the most basic approach 
to the numerical integration of (1) results from expressing U[X, (m + 1) At] in 
a truncated Taylor series 

where urn stands for U(X, m At). It can be shown [l l] that this method is unstable 
for p = 1 and p = 2; however, it is stable for p = 3 and p = 4. The third-order 
scheme (p = 3) has been applied with success in several nonlinear partial differ- 
ential equations including the Vlasov-Poisson system of equations in three phase- 
space variables [ll-131. The only disadvantage of this scheme has to do with the 
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computation of the second and third time derivatives. When Eq. (1) has a number 
of nonlinear terms in several space variables, the computation of the higher-order 
partial derivative terms becomes rather involved. 

Another differencing method that has received a great deal of attention is the 
“midpoint leapfrog method” [l-8] in which zP+l is approximated as 

11”‘+1 = u”+l + G”2 At. (3) 

This method is second-order accurate in time, with attractive error characteristics. 
Morton [4] has studied seven different algorithms in detail and reached the con- 
clusion that the leapfrog algorithm, Eq. (3) is the best of the generally applicable 
basic methods. However, the leapfrog method for hyperbolic problems is only 
marginally stable [6, p. 551. Kreiss and Oliger [5] have given examples of numerical 
schemes that are unstable when leapfrog time differencing is used. This instability 
arises from a computational mode, leading to the separation of the solution at 
subsequent time steps. Such time-splitting instability has been also observed in the 
numerical solution of the Vlasov equation [14, p. 1741. As a result, the leapfrog 
scheme must be reinitialized after, say, 20 time steps [6, 14, 151. Because of this 
major weakness, some do not consider the leapfrog scheme as a practical method 
11% 

After careful study of several methods, Lilly [I] found that the Adams-Bashforth 
method was preferable to the leapfrog scheme. The second-order Adams-Bashforth 
method advances Eq. (1) by the folllowing rule: 

u*+l = urn + [3G” - G”-‘1 At/2. (4) 

This method is unconditionally unstable, with a weak divergence caused by an 
amplification factor 1 + O(At2) [l, 6, p. 741. Because the instability is weak, the 
method can be used for inviscid flow calculations for short time. 

As we shall see, the third-order Adams-Bashforth scheme [16, p. 137, 17, 
p. 1941 

um+l = u” + [23G” - 16G”-l + 5Gm-2] At/12 

is stable. However, it requires an additional level of G values. 

(5) 

III. CORRECTED TIME-DIFFERENCING SCHEMES 

Here, we consider time-differencing schemes that are composed of two steps: 
(1) A predictor step, followed by (2) a corrector step. Results obtained from the 
predictor step will be denoted by a tilde mark, e.g., u’. The corrected values from 
step (2) bear no tilde sign. The first method is a conventional (fully corrected) 
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two-step time-differencing procedure. Methods 2 and 3 are partially corrected 
schemes. 

Method 1. The corrected leapfrog scheme. The predictor step is the leapfrog 
scheme, 

$7+1= urn-l + G”2 At, (6) 

followed by a trapezoidal corrector step, 

zP+l = u” + (Gm + &‘i+l) At/2. (7) 

Method 2. The partially corrected second-order Adams-Bashforth Scheme. The 
predictor step is the same as Eq. (4), 

cm+1 = u” + (3C:” - ~3-1) At/2 (8) 

and the corrector step is 

um+l = urn -1 (em + Q;lm+l) At/2. (9) 

We note that in (6) and (7), G” appears, which is computed from the corrected 
value 24m. In the partially corrected procedures, this step is omitted, and the uncor- 
rected derivative, cm, is used as in (8) and (9). 

We have also considered the partially corrected leapfrog scheme, i.e., using 

$x+1= urn-l + Gm2 At (101 

in place of (8). For constant At, Method 2 is equivalent to (9) and (10). The 
advantage in using (8) instead of (10) is that (8) is easily generalized to variable 
time steps, whereas (10) is not, since it is based on the idea of time centering. 

Method 3. The partially corrected Adams-Bashforth scheme of order 3. In 
this case, the predictor step is the same as (5), 

zP+l = a” + [23G” - 1607-1 + 5&+“](At/l2), (11) 

followed by the corrector step [16, p. 1441 

p+1 = p + [5Gn+l + 8Gm - O-‘](At/l2). (12) 

The expressions for the corrector step given by Eqs. (9) and (12) are the same as 
in the Adams-Moulton method [17, p. 1431. However, the present methods differ 
from the Adams-Moulton method in that the time derivative is computed after 
the first step only. 
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IV. ERROR ANALYSIS 

We shall examine the numerical error resulting in the three methods described 
in the previous section. To show the merits of these schemes, their error charac- 
teristics will be contrasted with those of some of the popular numerical methods. 
These errors are determined from the numerical solution of the simple convective 
equation 

au/at = -v(au/ax) (13) 

where 2~ is constant. If we let 

U(k, t) = c U(X, t) exp(--ikx), (14) 

the trivial solution of (10) can be written as 

U(k, t) = U(k, 0) exp(iwt), (15) 
where w = -kv. 

The differencing error E is defined as the deviation of the numerical solution 
U* from the true solution U in one time step At, i.e., 

E = (U*” - umyum (16) 

under the assumption that 
(Jm-1 = Urn-1 * (17) 

In these equations, U" stands for U(k, m At). 
Although E depends on k, v, and At, its dependence can be expressed in terms 

of one variable [l 1] 
cj=-kvAt=wAt, (18) 

which represents the change in the phase angle of the wave in one time step. 
The geometrical representation of E is shown in Fig. 1, which also illustrates 

the definition of the amplitude error 

&I = (I U*m I - I U” I>/1 U” I (19) 

and the phase error 
%I = (4* - 4)/d> (20) 

which are used often as a measure of goodness of differencing schemes. 
In some cases, one may be interested in employing a method having more 

favorable dispersion characteristics at the expense of more amplitude error and 
vice versa. If, however, there are no special reasons for preferring one type of 
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FIG. I. Graphical representation of the differencing error E, the amplitude error 6,) and the 
relative phase error 8, . 

error to another, the magnitude of E appears to be a good overall measure of 
accuracy. As can be seen in Fig. 1, E accounts for the amplitude error as well as 
the phase error, and therefore, it provides an easy means of comparison between 
differencing schemes. 

The magnitude of the differencing error E versus w dt is shown in Fig. 2 for the 
time-differencing procedures discussed in Sections II and III. The partially corrected 
methods 2 and 3 have smaller differencing errors for w d t < 23” than the corre- 
sponding single-step differencing schemes. Unfortunately, Method 3 becomes 
unstable shortly after w d t = 24” and, therefore, its use is limited to cases in which 
one is willing to restrict oneself to small w At values in order to maintain differ- 
encing errors at very small levels. 

A rather attractive property of Method 2 is that its accuracy approaches that 
of Method 1, which is a fully corrected scheme, as d t + 0. 

WAt (radians) 

WAt (degrees) 

FIG. 2. Absolute value of differencing error vs wdt as defined by Eq. (16) and Fig. 1 for 
various numerical schemes. The second- and third-order Adams-Bashforth methods are indicated 
by A-B-2 and A-B-3, respectively. 
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As we see in Fig. 3, the small correction (9) applied after the otherwise unstable 
Adams-Bashforth scheme (Eqs. (4) and (8)), results in a stable time-differencing 
procedure, Method 2. A disadvantage of Method 3 is that it has positive amplitude 
error for o dt < 15” and, therefore, it is not a stable scheme. This very weak 
numerical instability, which is weaker than that of the second-order Adams- 
Bashforth scheme, is by no means a serious fault of the method. 

writ (radlansl 

FIG. 3. Amplitude error vs wdt as defined by Eq. (19) and Fig. 1 for various numerical schemes. 

The phase error curves (20) are shown in Fig. 4. We notice that the correction 
given by (9) applied in Method 2 results in improved phase-error characteristics 
over the second-order Adams-Bashforth scheme. The correction (12) applied in 
Method 3 to the third-order Adams-Bashforth scheme, however, does not reduce 
the phase error. On the contrary, after w dt = 23”, the phase error of Method 3 
grows very fast due to the instability mentioned earlier. 

WAt (radians) 

wat (degrees) 

FIG. 4. Phase error vs wdt as defined by Eq. (20) and Fig. 1 for various numerical schemes. 
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V. NUMERICAL INTEGRATION OF THE VLASOV EQUATION 

The time-integration schemes described in Section III were tested by applying 
them to the Vlasov equation 112-14, 181 

for the electron distribution f(x, a, t), where the electric field E(x, t) is given by the 
Poisson equation, 

aqax = 1 - j-f do. (2-a 

These equations are written in dimensionless units [9]. The basic unit of time t 
and velocity u are the reciprocal of the plasma frequency (w&l and the mean 
thermal velocity ut. Length x is measured in units of the Debye length. The 
equilibrium electron distribution in all our computations is Maxwellian, i.e., 

fo(u) = (25-)-lj2 exp(-$v2) 

and the initial condition for the electron distribution is 

(23) 

f(x, &O> = fo(“)(l + 01 cos kx), (24) 

where k is the wavenumber and 01 is the initial perturbation amplitude. The initial 
electric field amplitude is 

E,, = a/k. (25) 

The ASD method for the numerical solution of Eqs. (21) and (22), using a 
third-order Taylor series (2) time-integration scheme is described elsewhere [ 12, 131. 
In this approach, all derivatives with respect to x and u are evaluated by means of 
finite-Fourier-transform methods. In order to test the present methods on a 
nonlinear partial differential equation, we developed programs for the solution 
of Eqs. (21) and (22) based on the ASD method using the various time-integration 
schemes discussed previously. We shall describe only the application of Method 2 
to the Vlasov-Poisson system of equations. The other methods differ only in the 
time-integration scheme employed. 

In Method 2, Eqs. (8) and (9), the electron distribution function is advanced 
by approximating f(x, U, c + At) in two steps. In the first step, we obtain 
f(x, U, t + dt), an intermediate result, by implementing 

J(x, u, t + At) = f(x, u, t) + [3 “i”ato9 t, - af(xv “if - dt) ] q . (26) 
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The final approximation is obtained from the corrector step 

The time derivative ofi is obtained from the expression 

(27) 

where the partial derivatives offlwith respect to x and u are computed by the finite- 
Fourier-transform method as described elsewhere [ 1 l-1 31. 

For the test problem, we chose the initial conditions given by (23) and (24), 
with k = 0.5 and 01 = 0.1. All time-integration schemes gave the same well-known 
[9, 12, 13, 181 qualitative result for the electric field shown in Fig. 5. To make a 

14 

kc 0.5 
m= 0.1 

01 
0 IO 20 30 40 50 60 70 60 90 

TIME (W,-‘) 

IO 0 

FIG. 5. Electric field vs time for a nonlinear wave. 

quantitative comparison of the numerical inaccuracies in this nonlinear problem, 
we recorded the magnitude and the position (in time) of the thirteenth peak (see 
Fig. 5) in the vicinity of t = 30. The time of occurrence and the magnitude of 
EmaX were calculated from three neighboring samples by means of second-order 
interpolation. These results are shown in Table I for two different time steps. In 
terms of the units employed in Table I, the initial amplitude of the wave at t = 0 
is E,, = 100. These results demonstrate conclusively that all methods considered 
are suitable for the numerical integration of the nonlinear Vlasov equation. The 
instability in the two unstable cases in Table I are due primarily to the u(aflax) 
term in (21). By neglecting the E(aflav) term in (21) we can write it as 

oF+vkF=O, (29) 
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where 

P = 1 s f(x, v, t) exp[--i&x + wt)] dx df, (30) 

and obtain for + = w dt, Eq. (18), the expression 

4 = -vkAt (31) 

In the nonlinear example considered above, vmax = 5 and kma, = 1.5. There- 
fore, with At = 0.075, 1 cjmax / > 0.56 or 32”. According to Fig. 3, for + > 30”, 
numerical instability can be expected for both of the cases indicated by Table I. 

TABLE I 

The Magnitude and Position of Em& 

Ar = 0.05 At = 0.075 
- 

I Emax I t I -&ax I t 

Taylor-3 
Leapfrog 
Adams-Bashforth- 
Adams-Bashforth- 
Method 1 
Method 2 
Method 3 

1.3381 30.378 1.3354 30.378 
1.3348 30.349 1.3301 30.312 
1.3338 30.304 Unstable - 
1.3315 30.379 1.3127 30.381 
1.3344 30.392 1.3119 30.410 
1.3311 30.393 1.3087 30.414 
1.3404 30.378 Unstable - 

OIn the neighborhood of t = 30.378 in the numerical solution of Eqs. (21) 
and (22) for initial conditions (23) and (24) with 01 = 0.1. 

The t values in Table I are scattered about the value 30.378. Greater values 
correspond to methods with negative phase error, whereas smaller t values indicate 
leading (positive) phase error. In this respect, there is a good agreement between 
these I values and the phase error curves shown in Fig. 4. The only exception is 
the third-order Adams-Bashforth scheme, in which, in spite of its positive phase 
error, the peak appears slightly later than 30.378. The most probable cause for this 
is the relatively strong numerical damping in this scheme. 

The I Em, [ values depend on both the amplitude error and the phase error. 
For example, the leapfrog scheme with “zero damping” results in a smaller 
1 Ema, / value than Taylor-3. The reason for this is that the numerical model has 
excessive phase mixing due to the leading phase error of the leapfrog scheme. 
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Similarly, in the second-order Adams-Bashforth scheme, the rather large positive 
phase error results in a smaller 1 EmaX I value, in spite of the positive amplitude 
error that should lead to growth. 

As we stated earlier, the additional amount of computation required in the 
corrector step of Methods 2 and 3 is relatively small. In the numerical example 
discussed above, Method 2 required about 1 % more computation than the 
leapfrog or the second-order Adams-Bashforth method, 

VI. CONCLUSIONS 

We have described partially corrected time-differencing schemes and compared 
their error characteristics with several well-known differencing methods. An 
important feature of these numerical procedures is that the corrector step does 
not involve the recomputation of the time derivative of the function to be 
integrated. Therefore, when these schemes are applied in transform methods, 
the computation required in the corrector step is only a very small fraction of that 
in the predictor step. We found, however, that this simple corrector step improves 
the error characteristics of the predictor step. This is true particularly in the case 
of Method 2, which uses the second-order Adams-Bashforth schemes as predictor. 
While this predictor scheme is unstable, the corrected differencing scheme is stable. 
Thus, the instability of the predictor has very little effect on the stability of the 
result after the corrector is applied. 

All the differencing methods considered in this paper were tested on the nonlinear 
Vlasov-Poisson system of equations with two phase-space variables x and v. 
The results of these tests were consistent with the truncation error properties of 
these differencing schemes as we discussed in Section V. In this test, Methods 2 
and 3 required about 1 % more computation than the single-step procedures 
without the corrector step. Method 1, however, in which the customary predictor- 
corrector concept is used, requires about twice as much computation as the leap- 
frog scheme. The Taylor-3 method, (2), which is the most accurate, is 
approximately three times slower (per time step) than the leapfrog scheme. This 
is because each time step requires three time-derivative computations. Among 
the time-differencing procedures studied in this paper, Method 2 appears to be the 
most attractive practical method. For very high accuracy, Method 3 should be 
considered. 

ACKNOWLEDGMENT 

The author wishes to thank Pier0 Sguazzero for numerous useful discussions. 



TIME-DIFFERENCING SCHEMES 207 

REFERENCES 

1. D. K. LILLY, Mon. Weather Rev. 93 (1965), 11. 
2. J. A. BYERS, J. Comput. Phys. 1 (1967), 496. 
3. A. GRAMMELTVEDT, Mon. Weather Rev. 97 (1969), 384. 
4. K. W. MORTON, Proc. Sot. London A. 323 (1971), 237. 
5. H. 0. KREI~S AND J. OLIGER, Tellus 24 (1972), 199. 
6. P. J. ROACHE, “Computational Fluid Dynamics,” Hermosa, Albuquerque, N. M. 1972. 
7. S. A. ORSZAG AND M. ISRAELI, Ann. Rev. Fluid Mech. 6 (1974), 281. 
8. R. W. HAMMING, “Numerical Methods for Scientists and Engineers,” McGraw-Hill, New 

York, 1962. 
9. T. P. ARMSTRONG, R. C. HARDING, G. KNORR, AND D. MONTGOMERY, Methods Comput. 

Phys. 9 (1970), 30. 
10. S. A. ORSZAG, J. Fluid Mech. 49, 75, Part 1 (1971). 
11. J. GAZDAG, J. Comput. Phys. 13 (1973). 100. 
12. J. GAZDAG, Proc. Int. Symp. on Computing Methods in Applied Sciences and Engineering, 

Versailles, France, December 17-21, 1973; “Lecture Notes in Computer Science,” Vol. 11, 
Part 2, p. 37. (G. Goos and J. Hartmanis, Eds.) Springer-Verlag, New York/Berlin, 1974. 

13. J. GAZDAG, J. Comput. Phys. 19 (1975), 77. 
14. G. KNORR, J. Comput. Phys. 13 (1973), 165. 
15. J. E. FROMM, Private communication. 
16. R. W. HAMMING, “Introduction to Applied Numerical Analysis,” McGraw-Hill, New 

York, 1971. 
17. F. CFXHINO AND J. KUNTZMAN, “Numerical Solution of Initial Value Problems,” Prentice- 

Hall, Englewood Cliffs, N.J. 1966. 
18. J. CANOSA AND J. GAZDAG, Phys. Fluids 17 (1974), 2,030. 


